

The University of Texas at Austin Center for Electromechanics

# 2016 ADVISORY PANEL ENERGY STORAGE

Scott Pish Center for Electromechanics The University of Texas at Austin 5/10/2016

# Energy Storage: Importance

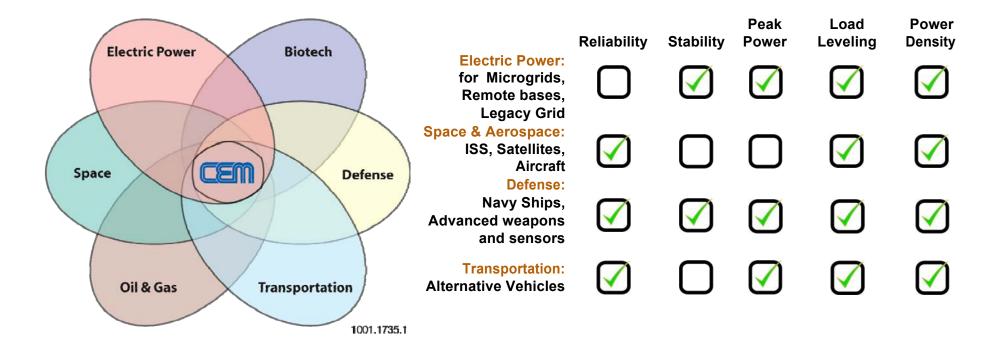
#### Energy security and reliability-

- As the legacy grid continues to show its age, ES plays a key role in meeting ever-increasing dependence and demand for power.
- Vulnerability needs to be addressed before it is exploited.

#### Affordable Clean Energy-

• Enables use of low-cost and low-carbon energy sources.

#### **Developing Countries / Remote Areas-**


- There is an established link between access to energy and health (lighting, refrigeration, sanitation).
- ES enables use of distributed energy resources and renewable energy where infrastructure does not exist.





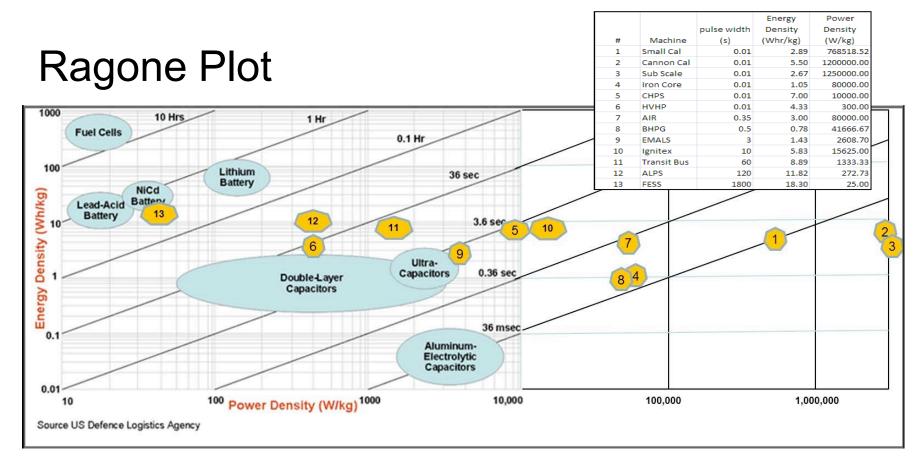
# Energy Storage: Aspects and Applications

#### Energy storage is critical to solving many of today's technical challenges...



... and plays a role in virtually all of CEM's core competencies.

# Energy Storage: Approach


- **Vision:** Develop the most efficient and effective ES technologies over relevant range of power, energy, and time scales.
- **Foundation:** Decades of experience in the design, analysis, fabrication, and testing of ES solutions including: rotating, capacitive, inductive, and battery storage systems. World class composite design, analysis, fabrication, and test experience.
- **Recent Activities:** PM machine energy storage and retention bandings. Advanced composite materials, processes, and geometries to enhance performance and lower cost. Impact of ES in naval power systems.
- **Future:** Analyzing the role of ES in the integration of renewables in legacy grids and microgrids; Unmanned Underwater Vehicles

### Energy Storage: Systems

# **Pulsed Power Cap Bank** 0.5 GW; 10 MJ **Flywheel** 4 MW; 479 MJ **Pulsed Alternator** 3 GW; 23 MJ

Note: Power numbers are nominal – Energy numbers are stored

### **Energy Storage:** Solutions



The Ragone plot compares the performance of a range of electrochemical and electromechanical devices.

# Energy Storage: Batteries











|                                 | Lead                                     | -Acid                  | Nickel Me                 | etal Hydride                    |                                  | Lithium lor                     | and Variants                    |                                   | Ultracap                        |
|---------------------------------|------------------------------------------|------------------------|---------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| Battery                         | Trojan T145                              | Deka 8G31              | SAFT NHE<br>5-200<br>NiMH | COBASYS<br>Series 1000<br>NiMH  | Valence<br>U24-12XP<br>LiFeMgPO4 | PHET<br>DOSBAS<br>C-LiFePO4     | Valence<br>U1-12XP<br>LiFeMgPO4 | Altairnano<br>Lithium<br>Titanate | Maxwell<br>BMOD0165             |
| Application                     | Stock Electric<br>& Plug-In Fuel<br>Cell | Stock Electric         | Plug-In Fuel<br>Cell      | Fuel Cell<br>dominant<br>hybrid | Plug-In Fuel<br>Cell             | Fuel Cell<br>dominant<br>hybrid | Fuel Cell<br>dominant<br>hybrid | State of the art electric         | Fuel Cell<br>dominant<br>hybrid |
| Specific<br>Energy<br>Storage   | 39 Wh/kg                                 | 36 Wh/kg               | 64 Wh/kg                  | 45 Wh/kg                        | 90 Wh/kg                         | 63 Wh/kg                        | 79 Wh/kg                        | 71 Wh/kg                          | 2 Wh/kg                         |
| Volumetric<br>Energy<br>Storage | 91 Wh/L                                  | 88 Wh <mark>/</mark> L | 132 Wh/L                  | 86 Wh/L                         | 141 Wh/L                         | 77 Wh/L                         | 110 Wh/L                        | 134 Wh/L                          | 3 Wh/L                          |
| Specific<br>Power               | 75 W/kg                                  | 100 W/kg               | 150 W/kg                  | 1000 W/kg<br>(10 s pulse)       | 350 W/kg                         | 830 W/kg                        | 310W/kg                         | 1250 W/kg<br>(10 s pulse)         | 7900 W/kg                       |

Battery systems offer advantages where high energy density is the primary concern.

Ultracapacitors (supercapacitors) can deliver very high power but the storage capacity is very limited.

# **Battery Applications**

#### Electric Transit Bus

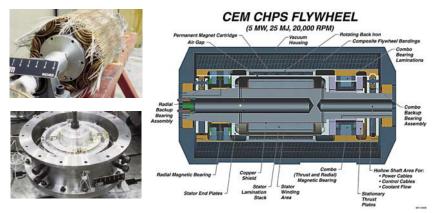
- Opportunity to collect data/knowledge on advanced batteries
- Battery life prediction and feasibility of on-route fast charging vs onboard slow charging



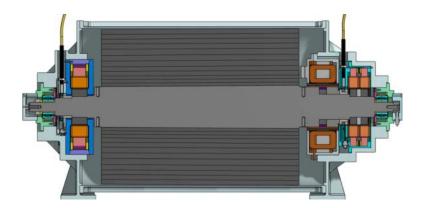
Advanced batteries can more than double the range of stock electric vehicle with lead-acid energy storage

#### Extended Range Hydrogen Utility Vehicle

- Goal: Significantly increase range without reducing performance.
- Hydrogen fuel cell retrofit of existing battery powered vehicle.
- Completed successful 12 month demonstration.




Fuel cell dominant hybrids increase range ~25% over fuel cells alone.

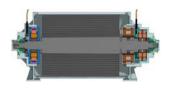

### Energy Storage: Flywheels



Transit Bus Flywheel 150-250 kW (peak), 100 kW (cont.), 2 kW-h

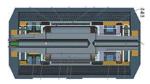


Combat Hybrid Power Systems (CHPS) Flywheel 5-10 MW (peak), 350 kW (cont.), 7 kW-h






Space Station Flywheel (FESS) ~5.0 kW (peak), 3.66 kW (cont.), 3.66 kW-h


Advanced Locomotive Propulsion System Flywheel 3 MW (peak), 2 MW (cont.), 130 kW-h

# Energy Storage: Flywheels









| Parameter              | NASA FESS            | ALPS System                  | Bus System           | CHPS System        |  |
|------------------------|----------------------|------------------------------|----------------------|--------------------|--|
| Function               | Energy Storage       | Load Leveling                | Load Leveling        | Leveling/Pulsed    |  |
| Energy Stored (kWhr)   | 3.6                  | 133                          | 2                    | 7                  |  |
| Peak Power (kW)        | 5                    | 2,000                        | 150                  | 5,000              |  |
| Typical Discharge Time | 30 minutes           | ~ 3 minutes                  | 30 seconds           | 3 seconds          |  |
| Rotational Speed (RPM) | 53,000               | 15,000                       | 40,000               | 20,000             |  |
| Machine Weight (lbs)   | 250                  | 19,000                       | 450                  | 1,100              |  |
| Motor/Generator        | Permanent Magnet     | Induction                    | Permanent Magnet     | Permanent Magnet   |  |
| Topology               | Partially Integrated | Non-Integrated               | Partially Integrated | Fully Integrated   |  |
| Cooling                | Cold Plate           | Air/Oil and Water            | Oil and Water        | Oil                |  |
| Bearings               | Homopolar Magnetic   | Hompolar Magnetic            | Homopolar Magnetic   | Homopolar Magnetic |  |
| Backup Bearing Duty    | Limited              | Limited                      | Significant          | Significant        |  |
| Gimbal                 | NA (Torque Balanced) | Required                     | Required             | Required           |  |
| Flywheel Design        | CEM Cylindrical      | CEM Cylindrical              | CEM Cylindrical      | CEM Mass Loaded    |  |
| Rotor Tip Speed (m/s)  | 920                  | 1,015                        | 935                  | 600                |  |
| Safety                 | RSL&NDE              | <b>RSL &amp; Containment</b> | RSL&Containment      | RSL                |  |

Flywheels and other rotating machines can operate over a wider range of power densities where shorter discharge times and very high cycle life are important.

# Advanced Composites for Flywheels

- Advanced materials and processing: Investigating use of nanoparticles in composite resin matrix to enhance strength and resist cracks. Investigating out-of-autoclave curing to reduce manufacturing cost.
- **Composite flywheel containment:** CEM developed a lightweight composite, rotatable structure to contain burst energy and dissipate rotational energy over extended time.
- Design, analysis, and test: CEM has leveraged world class design and analytical tools, manufacturing processes, and expertise to develop and demonstrate advanced composite structures.

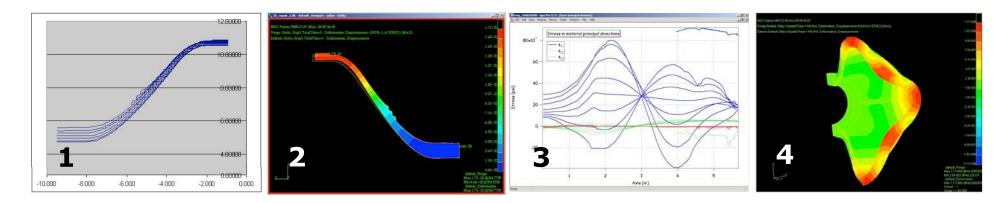


# Composite Design & Analysis

#### 1. Define candidate design (using CEMWIND)

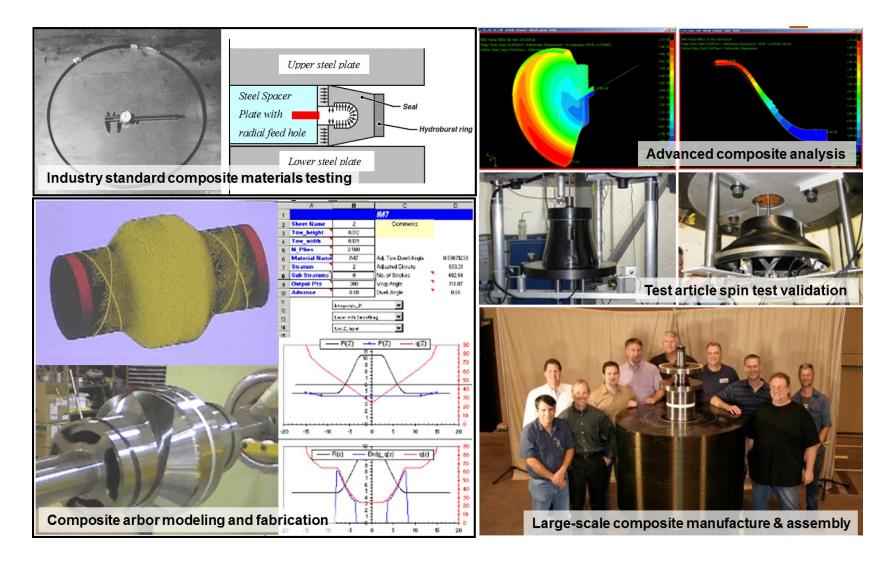
- Mandrel shape, wind angles, layer thicknesses
- CEMWIND performs fabrication checks (friction, bridging)
- Finite element model input file created

#### 2. Finite Element analysis (ABAQUS)


- Radial growth, stresses at rest and design speed
- Stiffness calculated for rotordynamics model

#### 3. Post-processing of finite element results (CEMWIND)

• Strain and stress translated to fiber principal directions


#### 4. Rotordynamic analysis (TXROTOR)

• Stiffness values used to determine critical speeds





## **Composite Manufacture & Test**



# Energy Storage: Areas of Interest

- *High Speed Machines*: Advanced composite structures for PM and other machines operating at 10-100 of krpm.
- Energy Storage Hardware: Analysis and demonstration testing of ES and associated technologies using established MW scale distributed test bed.
- *Naval Power Systems*: Continued study of energy storage solutions for Navy including the technology, size, and spatial distribution of ES.
- **Unmanned Underwater Vehicles:** Improve efficiency to extend range of UUVs. Harness energy in ocean currents.
- Renewables: Analysis and validation testing of increasing penetration of renewables on legacy power grid.

# Summary

CEM has both the experience and capabilities to make a difference by developing ES solutions for a variety of customers and applications.

- ES is vital for integrating distributed energy resources and renewables to strengthen new and existing power grids.
- Advanced rotating machines and flywheels appear to be gaining interest once again as battery development (and growing pains) continues.
- Advanced materials and processing will enable further growth.